Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 17(7): e0268591, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1968858

RESUMEN

Severe acute respiratory syndrome coronavirus 2 has been causing the pandemic of coronavirus disease 2019 (COVID-19) that has so far resulted in over 450 million infections and six million deaths. This respiratory virus uses angiotensin-converting enzyme 2 as a receptor to enter host cells and affects various tissues in addition to the lungs. The present study reports that the placental arteries of women who gave birth to live full-term newborns while developing COVID-19 during pregnancy exhibit severe vascular wall thickening and the occlusion of the vascular lumen. A morphometric analysis of the placental arteries stained with hematoxylin and eosin suggests a 2-fold increase in wall thickness and a 5-fold decrease in the lumen area. Placental vascular remodeling was found to occur in all of SARS-CoV-2-positive mothers as defined by RT-PCR. Immunohistochemistry with α-smooth muscle actin and the Kv11.1 channel as well as Masson's trichrome staining showed that such placental vascular remodeling in COVID-19 is associated with smooth muscle proliferation and fibrosis. Placental vascular remodeling may represent a response mechanism to the clinical problems associated with childbirth in COVID-19 patients.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Femenino , Humanos , Recién Nacido , Placenta , Embarazo , Mujeres Embarazadas , SARS-CoV-2 , Remodelación Vascular
2.
Med Hypotheses ; 147: 110483, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1009755

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the current pandemic of coronavirus disease 2019 (COVID-19) that have killed over one million people worldwide so far. To date, over forty million people have officially been identified to be infected with this virus with less than 3% death rate. Since many more people are expected to have been infected with this virus without the official diagnosis, the number of people who have recovered from the SARS-CoV-2 infection should be substantial. Given the large number of people recovered from either the mild SARS-CoV-2 infection or more severe COVID-19 conditions, it is critical to understand the long-term consequences of the infection by this virus. Our histological evaluations revealed that patients died of COVID-19 exhibited thickened pulmonary vascular walls, one important hallmark of pulmonary arterial hypertension (PAH). By contrast, such pulmonary vascular remodeling lesions were not found in patients died of SARS-CoV-1 during the 2002-2004 SARS outbreak or due to the infection by H1N1 influenza. The advancement in the treatment for the human immunodeficiency virus (HIV) infection has been remarkable that HIV-infected individuals now live for a long time, in turn revealing that these individuals become susceptible to developing PAH, a fatal condition. We herein hypothesize that SARS-CoV-2 is another virus that is capable to triggering the increased susceptibility of infected individuals to developing PAH in the future. Given the large number of people being infected with SARS-CoV-2 during this pandemic and that most people recover from severe, mild or asymptomatic conditions, it is imperative to generate scientific information on how the health of recovered individuals may be affected long-term. PAH is one lethal consequence that should be considered and needs to be monitored. This may also foster the research on developing therapeutic agents to prevent PAH, which has not so far been successful.


Asunto(s)
COVID-19/complicaciones , Hipertensión Arterial Pulmonar/complicaciones , Animales , COVID-19/fisiopatología , COVID-19/virología , Comorbilidad , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Endotelio Vascular/patología , Humanos , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/complicaciones , Pulmón/virología , Modelos Teóricos , Ucrania/epidemiología
3.
Vascul Pharmacol ; 137: 106823, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-939340

RESUMEN

Currently, the world is suffering from the pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. So far, 60 million people have been infected with SARS-CoV-2, and 1.4 million people have died because of COVID-19 worldwide, causing serious health, economical, and sociological problems. However, the mechanism of the effect of SARS-CoV-2 on human host cells has not been defined. The present study reports that the SARS-CoV-2 spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in lung vascular cells. The treatment of human pulmonary artery smooth muscle cells or human pulmonary artery endothelial cells with recombinant SARS-CoV-2 spike protein S1 subunit (Val16 - Gln690) at 10 ng/ml (0.13 nM) caused an activation of MEK phosphorylation. The activation kinetics was transient with a peak at 10 min. The recombinant protein that contains only the ACE2 receptor-binding domain of the SARS-CoV-2 spike protein S1 subunit (Arg319 - Phe541), on the other hand, did not cause this activation. Consistent with the activation of cell growth signaling in lung vascular cells by the SARS-CoV-2 spike protein, pulmonary vascular walls were found to be thickened in COVID-19 patients. Thus, SARS-CoV-2 spike protein-mediated cell growth signaling may participate in adverse cardiovascular/pulmonary outcomes, and this mechanism may provide new therapeutic targets to combat COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Células Cultivadas , Células Endoteliales/patología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Humanos , Cinética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/virología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/virología , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/virología , Receptores Virales/metabolismo , SARS-CoV-2/patogenicidad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA